A second-order overlapping Schwarz method for a 2D singularly perturbed semilinear reaction-diffusion problem

نویسندگان

  • Natalia Kopteva
  • Maria Pickett
چکیده

An overlapping Schwarz domain decomposition is applied to a semilinear reaction-diffusion equation posed in a smooth two-dimensional domain. The problem may exhibit multiple solutions; its diffusion parameter ε2 is arbitrarily small, which induces boundary layers. The Schwarz method invokes a boundary-layer subdomain and an interior subdomain, the narrow subdomain overlap being of width O(ε| lnh|), where h is the maximum side length of mesh elements, and the global number of mesh nodes does not exceed O(h−2). We employ finite differences on layer-adapted meshes of Bakhvalov and Shishkin types in the boundary-layer subdomain, and lumped-mass linear finite elements on a quasiuniform Delaunay triangulation in the interior subdomain. For this iterative method, we present maximum norm error estimates for ε ∈ (0, 1]. It is shown, in particular, that when ε ≤ C| lnh|−1, one iteration is sufficient to get second-order convergence (with, in the case of the Shishkin mesh, a logarithmic factor) in the maximum norm uniformly in ε. Numerical results are presented to support our theoretical conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem

A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimate.

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A Uniformly Accurate Collocation Method for a Singularly Perturbed Problem

A semilinear singularly perturbed reaction-diffusion problem is considered and the approximate solution is given in the form of a quadratic polynomial spline. Using the collocation method on a simple piecewise equidistant mesh, an approximation almost second order uniformly accurate in small parameter is obtained. Numerical results are presented in support of this result. AMS Mathematics Subjec...

متن کامل

Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem

A semilinear reaction-diffusion equation with multiple solutions is considered in a smooth two-dimensional domain. Its diffusion parameter ε2 is arbitrarily small, which induces boundary layers. Constructing discrete suband super-solutions, we prove existence and investigate the accuracy of multiple discrete solutions on layer-adapted meshes of Bakhvalov and Shishkin types. It is shown that one...

متن کامل

A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem∗

The numerical solution of a singularly perturbed semilinear reaction-diffusion two-point boundary value problem is addressed. The method considered is adaptive movement of a fixed number (N +1) of mesh points by equidistribution of a monitor function that uses discrete second-order derivatives. We extend the analysis by Kopteva & Stynes (2001) to a new equation and a more intricate monitor func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012